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The objective of this paper is to show how to formulate a bifurcation theory for 
pipe flows in terms of the friction factor. We compute the slope of the friction 
factor us. Reynolds number curve and the frequency change for the time-periodic 
solution which bifurcates from Poiseuille flow through annular ducts. 

1. Introduction 
A response function for a fluid motion can be defined as a scalar function 

which measures the response of the flow to the external forces which induce the 
motion. For example, in problems of thermal convection the response function 
can be taken as the heat transported and the external forces can be regarded as 
the applied temperature difference. The dimensionless response function relates 
the Nusselt and Rayleigh numbers. In  another example, flow down a pipe, the 
external force is the pressure gradient and the response function can be taken as 
the mass flux. The dimensionless response function relates friction factors and 
Reynolds numbers. We are going to study the response function for flow down 
an annular duct. 

The response function is generally obtained by evaluating a response functional 
on a suitably defined set of solutions. In  this paper we shall study statistically 
stationary solutions of the Navier-Stokes equations for flow through annular 
ducts. These solutions are defined in 3 2; their chief property is that the spatial 
average over cylinders of such solutions is time independent. The bifurcating 
solutions which we shall construct have a time-dependent spatial average (see 
remarks closing 3 9). We shall assume that other solutions which are observed as 
turbulence have the property of statistical stationarity ; this is the basic assump- 
tion of the variational theory of turbulence (Howard 1963, 1971; Busse 1969, 
1970). The assumption gives a sense in which fluctuating flow in a steady environ- 
ment can have steady average properties. 

The purpose of our analysis is best served by drawing a distinction between 
laminar Poiseuille flow and all the other statistically stationary flows, including 
time-periodic bifurcating flow. We shall call all these other flows turbulent. The 
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analysis is conveniently framed in terms of the friction-factor discrepancy, 
which is the difference f, - fL, where f T  is the friction factor for turbulent flow 
and fL the friction factor for laminar flow. 

The main contribution of this work is to show how to introduce the response 
function, the friction-factor discrepancy (a function of the Reynolds number), 
as an expansion parameter for constructing the time-periodic solutions which 
bifurcate from laminar Poiseuille flow. The friction-factor discrepancy will 
appear as the ‘amplitude’ in our perturbation study. The introduction of the 
friction factor allows a direct comparison of stability and perturbation results 
with experiments. The relation of analysis to experiments may be better under- 
stood once one is in possession of a proper understanding of the response function 
(‘$2, 3, 4 and 11)) the direction of bifurcation ($97, 10 and 11)) the instability of 
subcritical bifurcating solutions ($ 7) and the concept of the snap-through in- 
stability ($97 and 11). 

The basic theory for our study, apart from matters relating to the response 
function which are new, is a specialization of that given first by Joseph & Sat- 
tinger (1972)t.  The instability of subcritical bifurcating solutions and the concept 
of a snap-through instability are explained more fully there than here. 

Our numerical study of the bifurcation problem is essentially an application of 
the method used by Chen & Joseph (1973) to study subcritical bifurcation of 
plane Poiseuille flow to the study of bifurcation of flow in annular ducts. The 
relation of these methods to those used in previous studies as well as certain 
other points of interest not treated here are discussed in the Chen & Joseph paper. 

2. Decomposition of the whole motion into a mean motion plus a 
fluctuation with a zero mean 

We consider flow between concentric cylinders. The axis of the cylinders coin- 
cides with the x axis, where (x, 8, r )  are polar cylindrical co-ordinates and 

r2 2 r 2 rl 

is the range of values of the radius between the outer and inner cylinder. The 
reduced pressure Il (pressure divided by the constant density) is assumed to be 
of the form 

where 111 is bounded as x -+ & 00 and G, > 0 is a constant which is determined by 
the applied pressure drop. 

II(x,O,r,t) = II1(x,O,r,t)-GTx, (2.1) 

The equations which govern the motion of the fluid in the annulus are 

aVpt + V .VV = - VII,  + e,G, + vAV, (2.2a) 

divV = 0 ( 2 . 2 b )  

t This theory is an extension to partial differential equations of the Hopf bifurcation 
theorem for systems of ordinary differential equations. Hopf ( 1942) considers bifurcation 
from a real eigenvalue (steady bifurcation) and bifurcation from a. complex eigenvalue 
(time-periodic bifurcation). Hopf was the first to prove that subcritical bifurcating solu- 
tions are unstable and that supercritical bifurcating solutions are stable. Hopf felt that his 
results might apply to partial differential equations and he makes reference to the Taylor 
problem and other famous problems of hydrodynamic stability. 
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and VIV1 = VIVZ = 0. ( 2 . 2 c )  
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Here e, is a unit vector parallel to the x axis. 

is to introduce a cylinder average 
The motion (V, II,) may be decomposed in several ways; one convenient way 

and an overall average 

for any quantity f. Then, we may set 

(V,rIJ = (V+V’,W,+II’), 

where primed quantities are fluctuations and have a zero mean. The average of 
the velocity V, will be denoted by (g). 

By statistically stationary we shall understand that the time derivatives of 
cylinder averages are zero and that there is no mean circumferential motion 
(G = 0). The vanishing of the mean radial component of velocity (q = 0) may 
be deduced from the continuity equation. 

To study statistically stationary turbulent flow through the annulus we 
form the cylinder averages of the equations of motion. The equations governing 
the mean motion are 

- 
d(r2Vi Vi) /dr  = 0, 

The equations governing the fluctuations are 

(2.6a) 

(2.6b) 

( 2 . 6 ~ )  

(2.7) 

All velocity components vanish on the solid cylinders at  r = rl and T = r2 and 
div V = div V‘ = 0. Equation (2.6 b)  shows that Vi  V i  is a constant whose value 
is zero at  the boundary and elsewhere. We find the energy identity 

(V;Vj:dQ/dr) = -v(lVV‘l2) (2.8) 

from the overall average of (2.7). 
A basic and important consequence of the assumption of statistical stationarity 

is that (2.6 c) has a first integral; after introducing the equation (2.10) for laminar 
flow with a constant pressure gradient GL this integral may be written as 

r i  - T$  ( ViTVj:) GT-GL[72+-] = w-- (G-U, ) ,  d -  (2.9) dr 
rv;v;+- - -- 

21ny 2 
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where 7 = rJr2 and 
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(2.10) 

Combining (2.8), (2.9) and (2.10) we find that 

where h(r) = r+(rg-r:)/(2rhq). 

Equation (2.11) shows that 

with equality only if V' = 0. 
Relations (2.9) and (2.12) are the basis for the following laminar-turbulent 

comparison theorems: (i) statistically stationary turbulent Poiseuille flow hus a 
smaller mass flux ( <rx) > (U,)) than the laminar Poiseuille flow with the same 
applied pressure gradient (GT = GL) ; (ii) statistically stationary turbulent Poiseuille 
$ow has a larger applied pressure gradient (G, > GL) than the laminar flow with the 
same mass$ux ((E) = (U,)). The first of these theorems was proved by Thomas 
(1942); the proof given below follows Busse (1969, 1970). One notes that the 
integral of r times (2.9) may be written as 

(2.13) 

(h(r) V;V;) 2 0 (2.12) 

(h(r) V; V;)-$(GT- GL) [ri + r: + (rg - r:)/ln 71 = - 2v (E - U,). 

Equation (2.13) together with (2.12) proves the comparison theorem. 

3. Decomposition of the whole motion into laminar Poiseuille flow 
plus a disturbance 

We want to compare two different resolutions of the same motion V: 

V = i7Jr) ex + V'(x, 8, r, t )  = U,(r) ex + ~ ' ( x ,  8, r ,  t ) ,  (3 . la ,  b )  

where (3. I b) gives the decomposition into laminar flow plus a disturbance and 

Equations (3.1 a )  and (3.1 b )  imply that 

v; = u;, v; = u;, E+ v;. = u,+ u;.. (3.3) 

The relation FJr) = U,(r) + FJ; (3.4) 

follows directly from the cylinder average of (3.1 a, b) .  We note that (3.4) implies 
that is statistically stationary (cf. remarks closing 0 9). 

We shall make use of the following relation: 
- -  v; v; = u;. u;. 

v;v;= v;:u;= (ux--~+U;)u;= (u,-~)u;+uj:u:= u;u;. 

(3.5) 

To prove (3.6) we use (3.3) to write 
- - -  
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Using (3.5) we may rewrite (2.13) as 

(h(r) UA U i )  = $ ( G T -  G,) [r;+r: + (rg - r:)/ In71 - 2v(E- U,). (3.6) 

This basic relation will be used in the next section to define the pressure-gradient 
discrepancy functional for flows with a constant mass flux. 

4. The response function near the point of bifurcation 
The linear stability problem associated with Poiseuille flow through annular 

ducts has been considered by Mott & Joseph (1968); they restrict their study to 
axisymmtric disturbances. Here we shall construct the axisymmetric flows which 
bifurcate from laminar flow. To construct the bifurcating solution we shall 
use the basic perturbation method of Joseph & Sattinger (1  972) in its streani- 
function formulation given by Chen & Joseph (1973) in their study of plane 
Poiseuille flow. 

One aim of t,he present work is to show how to enrich the physical content of 
the perturbation theory by a proper choice of the amplitude paramekr. 

For any axisymmetric motion we may introduce a stream function such that 

The resolution of the motion into Poiseuille flow plus a disturbance 
N 

9 = T+Y, aT/ar = rU,, (4.2) 

leads to the following nonlinear boundary-value problem for Y' : 

and (4.3b) 

where 

We note that ewery solution of ( 4 . 3 ~ ~  b )  has the same massflux as the laminar 

t There is no loss of generality in restricting the bifurcation analysis to flows which 
satisfy (4.36). All the other possibilities may be reduced to this one (see Joseph 1974); 
for example, the bifurcating flow with the same pressure gradient GL as the laminar flow 
U,(T) may be obtained by adding a suitably determined laminar flow to the solution of 
(4.3a, 6). 

I3  F L M  66 
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It follows from (4.4) and (3.6) that the pressure-gradient discrepancy is related 
to solutions of (4.3u, b)  by 

(4.5) 

It is, of course, well known that the friction factor f and pressure gradient are 
related by the formula 

C: = Qf ( u,e)2/Dh, (4.6) 

where D , = 46 = 2(r2-r1) is the hydraulic diameter (the ratio of four times the 
area to the wetted perimeter). We introduce dimensionless variables 

H.ere, &2 = f T - f L  > 0 (4.8) 

is the friction-factor discrepancy (the friction factor for turbulent flow minus 
the friction factor for laminar flow with the same mass flux). The symbols t ,  r 
and x are being used for both dimensional and dimensionless variables. From this 
point on only the dimensionless variables are used and 

2 
-a) < x < 00, a = - < r < - -  = b. 

1-71 1-71 
The Reynolds number 

R = (U,>S/V 

(4.9) 

(4.10) 

as well as the dimensionless function of the radius ratio 

appear in the dimensionless statement of the boundary-value problem governing 
the bifurcating solution. This follows from (4.3) as 

h A 

Y = aY/& = 0 a t  r = a, b (4.12 b)  
and, using (4.5)-(4.8), 

b(7 )  = (h(r) vu) = (4.12 c) 

We shall seek a spatially periodic solution of (4.12) with a period 2nla in x. The 
bifurcating solution is necessarily tirne periodic when the solution of the spectral 
problem (Orr-Sommerfeld problem, see $ 5 )  is both unique and time periodic. 

There is a unique curve R(e2) and associated frequencies ~ ( 6 2 )  for which time- 
periodic solutions of (4.12) exist. R(e2) = R(fT-fL)  gives the response curve for 
Yoiseuille flow near the point of bifurcation; this is the relation between the 
Reynolds number and the friction factor. There is abundant literature reporting 
experimental measurements of the response curve. 



Bifurcating Poiseuille $ow through annular ducts 195 

5. Instability of the basic flow 
The spectral problem for the instability of the annular duct flow described by 

(3.2) is obtained from (4.12a, b)  by setting e = 0 in ( 4 . 1 2 ~ ) .  Equations (4.12a,b) 
can then be written as 

A a9 
ar 

(:-2+2) 9 = 0, Y = - = 0 at r = a, b,  periodicity in x, ( 5 . 1 ~ )  b,c)  

where 2[U,h]= 

andh = 1/R. 
To obtain the spectral problem, solutions of (5.1) are sought in the form 

A 

Y(x, r ,  t ,  A )  = e--y(h)t$(x, r ,  A) .  
This leads to 

(5 .3 )  

- yD2$ + 9$ = 0, $ = a$/ar = 0 a t  r = a, b, periodicity in x. 
( 5 . 4 ~ )  b, c )  

The values y (A)  = [(A) + iq(A) are eigenvalues of the spectral problem (5.4). 
If [ (A )  < 0 then the flow U is unstable. For large values of A (i.e. small R),  
t(A) > 0 for all eigenvalues y(A).  The border between stability and instability is 
defined by the critical value h = A, = l /Rc where [(A,) = 0. At criticality 
y(h,) = @(A,) = iw, and 9 ( U ,  A,) = 2,. If y(A)  is a simple eigenvalue of (5.4), 
then y(h)  = [ ( A ) - i $ ( A ) ,  the complex conjugate of y ( h ) ,  is also an eigenvalue. 
The functions $(x, r ,  A )  and $(x, r, A) are eigenfunctions of (5.4) belonging, respec- 
tively, to the eigenvalues of y and 7 of (5.4). 

For the solutions $(x, r ,  A) and $(x, r,  A) of (5.4) to be periodic in x with period 
27~/a,  where a is the wavenumber, it is necessary that these solutions are expres- 
sible in the form 

$(x, r ,  A(a)) = eia"$(r, A(a)). (5.5) 

Substitution of (5.5) into (5.4) leads to the Orr-Sommerfeld problem for the 
annular duct flow. 

6. The adjoint problem and a perturbation formula for y' 
For any functions ii and 8 which are 2nla periodic in x and such that 

a = 8 = aii/ar = = o 

at r = a and b, the scalar product (a, 8) is defined as 

The operator -yD*2 + 5?*, the adjoint of - yD2 + 9, is defined by the require- 
ment that 

(a, [ - y D 2 + + ] 8 )  = ( [ -7D*2+=2*]&,8) .  (6.2) 
13-2 



196 

With the aid of (5.2) and (6.2),  one finds 
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where (6.4) 

The adjoint eigenvalue problem is thus described by the system 

- TD*2$-* + L?*$-* = 0, $-* = asr/-*/ar = 0 at r = a, b, periodicity in x. 
(6.5a, b, c )  

It is well established from the linear theory that the flow loses stability as 
R is increased past R, at a fixed value of a along the lower branch of the neutral- 
stability curve up to the point of maximum a;  on the other hand, the flow gains 
stability as R is increased past R, a t  a fixed a on the upper branch of the neutral 
curve beyond the point of maximum a. We shall next derive the perturbation 
formula which gives the value of y' = dy(h)/dh at a fixed value of a. 

To proceed, one differentiates (5.4) with respect to h and finds 

( - yD2 + 9) d$/dh  - ?ID2$- - D4$ = 0, (6.6a) 

9 = 2 r2) = 0 a t  r = a, b, periodicityinx. 
d h  ar d h  

(6.6b,c) 

Since 

it can be seen that 
Y' = - (D", @*)/(D2$-> $-*I* 

7. The perturbation series ; subcritical bifurcating solutions and their 
stability 

We now turn our attention to the basic problem (4.12), and shall obtain the 
nonlinear solutions which are periodic in time with period 2n/w(s).  By introduc- 
ing w ( s )  t = s the problem (4.12) may be reformulated as 

$@+sJ(q, D 2 q )  = 0, YP = aV/ar = 0 at r = a, b, (7 . la ,b)  

( 7 . 1 ~ )  

h A 

$(x, r,  s)  is periodic with period 2n-/a in x and 27r in 9,  

( 7 . l d )  

where y [~ ,  4 = waD2/as+$p[u, A].  (7.2) 

The condition ( 7 . 1 4  is a normalizing condition which will relate s2 directly to 
the friction-factor discrepancy [see (4.8)]. 

The solutions of (7.1) can be constructed as a Taylor series 
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where A, = ( l /Z! )  8A/a$,  etc. It is not hard to establish [see (8.15)] that A(€)  and 
W ( E )  are even functions. Then when e is small A - A, > 0 if A, > 0 (see tables 1 ,  2 
and 3 ) .  If g' (A, )  > 0 then Poiseuille flow loses stability as A is decreased or as R 
is increased. The condition :'(Ao) > 0 is of greatest interest; in this case the 
bifurcating solution is subcritical if A, > 0 and supercritical if A, < 0. In  the 
subcritical case a time-periodic solution will exist when R < R,. It has been 
demonstrated by Joseph & Sattinger (1972),  using Floquet theory, that subcritical 
bifurcating solutions are unstable. It follows from this that in the case of greatest 
interest (A, > 0, c(Ao) > 0) any disturbance of laminar Poiseuille flow which does 
not decay will snap through the periodic bifurcating solution with the small 
value of the friction-factor discrepancy fT - fL = e2 and be attracted to larger 
norm solutions which we have called stable turbulence (see figure 1 a). 

Substitution of (7.3) into (7.1) leads to the following sequence of problems. 
At zeroth order, 

$,Yo = O,Yo = aY,/ar = 0 at r = a, b, ( 7 . 4 ~ )  b )  

(7.4c) 

At first order, 

y0yl + y l ~ ,  + J ,  = 0, Yl = aY,p  = 0 at r = a, b,] 

At second order, 

I ~oY2+$1Yl+$2Yo+J1=0,  Y,=aY,/ar=O at r = a , b ,  

Here, $0 = $ [ ~ o ,  4 1 9  $1 = m,aD2/as-AlD4, (7 .7 ) )  (7.8) 

Jo = J(Yo,D2Yo), J1 = J(Y1, D2Yo) +J(Yo, D2Y,). (7 .9 ) )  (7.10) 

The only two possible solutions of (7 .4)  when ?(Ao) is a simple eigenvalue of 

z1 = e-is$,(x, r,  A,(a)), z2 = 2,. (7.11) 
2, are 

The unique real-valued solution of (7 .4) ,  therefore, takes the form. 

Yo = 2 Re (zl) = e-is ljr0 + eisgO. (7.12) 

The amplitude of this solution is fixed by the normalizing condition ( 7 . 4 ~ ) ;  
the solution is unique to within an arbitrary translation of the origin of s. 

8. The solvability conditions 

to define another scalar product 
To determine the solvability condition for systems (7 .5 )  and (7 .6) ,  one needs 

1 2* [a,&] (6,S)ds 
0 

13-3 
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for 2n-periodic functions of s. For notational convenience, let 
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[a] = [&,21*], (8.2) 

where 2: = e-is$$, 2; = 2; (8.3) 

are the solutions of (6.5) at criticality, when 7 = - iw,. 

The adjoint problem to (7.4a, b)  is described by the system 

$$Y$ = 0, Y$ = aY$/ar = 0 a t  r = a, b, (8.4) 

(8 .5)  

where the adjoint operator 

$$ = - W , a D * p  i- 9; 

is defined relative to (8.1). 
Suppose that k io, are the simple eigenvalues of and consider the equation 

$,Yn = fn, n = 1,2 ,3 ,  ..., (8.6) 
where f ,  is a periodic function of x: and s with periods 2nla and 2n, respectively, 
Yn has the same periodicity as f ,  and Y, = aYn/ar = 0 at r = a, b. Then it can be 
readily shown using (8.4) that a necessary condition for the solvability of (8.6) is 

[ fn, $1 = [ f n ,  z,*I = 0. (8.7) 

Equation (8.7) is also a sufficient condition for solvability (Joseph & Sattinger 
1972). The periodic solutions of (8.6) are not unique. Any solution of the homo- 
geneous system (7.4) may be added to a solution of (8.6). The normalizing con- 
dition 

is sufficient to ensure uniqueness. 
By applying the condition (8.7) to (7.5) and (7.6), one finds 

and 

[$l'r,l+ [Yo1 = 0 (8.9) 

(8.10) [flYlI+ [ f Z ' r O l +  [Jll = 0. 

It is evident that [J,] = 0 by virtue of the integration over the variable s since 
J ,  contains no terms proportional to e-is. Thus, a t  first order, 

(8.11) I 0 = [YlYOl = wl[a(D2yo)lasl - 4[D4YO1 

= ( - io1+ y ' 4 )  (D2$o, $3, 
where the last expression follows from using (6.8) evaluated a t  criticality with 

$I.(x7 r, ho(a)) = $0. 

o1 = A, = y1 = 0 
It then follows that 

when y' 4 0. 
With the use of (8.13), equation (8.10) becomes 

(8.12) 

(8.13) 

- iw ,  + h,y' + [Jl]/(D2$,, $$) = 0. (8.14) 

To find A, and w2, one must solve problems (7.4) and (7.5). It is shown by Joseph 
& Sattinger (1972) that 

Au+l = OZlf l  = 0, 1 = 0, 1,2,  ... . (8.15) 
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Thus, the first non-zero corrections 

A = A, + € 2 ~ ~  + o(C4) 

= wo + €zwZ + o(64) and 

(8.16) 

(8.17) 

can be determined from (8.14) once [ J J  is known. To compute J,, one needs to 
solve problem (7.5). The €2 in (8.16) and (8.17) is equal to f T - f L  as in (4.8). 

9. The solution of the first-order equations and expressions for hz 
and w2 

Before proceeding to the solution of the first-order equations, the zeroth- 
order system (7.4) and its adjoint problem (8.4) will be written in terms of their 
respective amplitude functions $,(r) and $,*(r) defined by 

$,(x, r )  = $,(r) eiaz, $$(x, r )  = &(r) cia. (9.1) 

The system (7.4) reduces to the Orr-Sommerfeld system 

$, = q5; = 0 a t  r = a, b. (9.2b) 

The function $,,is to be normalized by the condition ( 7 . 4 ~ )  such that 

where b(7 )  is given by (4.11). The primes denote differentiation with respect to r. 
The adjoint problem (8.4) is expressible as 

= 4;’ = 0 a t  r = a,b. (9.4 b )  

Next, attention is directed to the first-order system. With f l  = 0, one can 

yoYl + J ,  = 0, Y, = aY,/ar = 0 at r = a, b,  (9.5a, b )  
write (7.5) as 

(9.5 c)  

Now, from (7.9) one finds with the use of (7.12) 

(9.6) J - J ( y  oZ\r,) = A e 2 i b - s )  + 2e-Zi(az-8) + B + 
0 - 0 ,  
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where 
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and 

By linearity, one may write 

yl = all(r) e2i(az-s) + $ll(r) e-Waz-s) + a1 2 + $ 1 2 + a o ~ o 9  (9.9) 

where aQYo is a multiple of the solution of the system (7.4). Application of ( 9 . 5 ~ )  
leads to a, = 0. This results in 

1 -  - a l l ( T )  e2iW-d + gl1(y) e--$i(az-s) + $12 + $12. (9.10) 

Substitution of (9.10) and (9.6) into (9.5a, b) leads to 

~0(alle2i(az-s))+Ae2i(az-s) = 0, = $l1 = 0 at r = a,b (9.11a,b) 

and $o#12+B = 0, a12 = &, = 0 at r = a,b. (9.12a, b) 

Working out (9.11a) and (9.12a), one obtains 

2 1 A 
2ia [~-; , ,+(~-8a2)(a;-;a; l )  +16a4$,, 1 = -- 2ia (9.13) 
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Equation (9.15) can be further simplified by integration by parts to yield 

- $11 (:&I - $ $0 + 3a2$o) - $0 6;1] dr ) .  (9.17) 

With (9.17), the values of A, and w2 can be evaluated from (8.14). By separa- 
ting (8.14) into real and imaginary parts, one finds 

A2 = -Re ([J111(D2$0,$;))/Rey‘, (9.18) 

w2 = 42 Im 7’ + Im ([Jll/(D2$0, $,*)), (9.19) 

where y’ = - (D4+0, $:)/(Da$o, $:) a t  criticality and, when use is made of (6.1) 
and (9.1), 

(9.20) 
2 

(D2@0? $3 = --=2 1 ~ ( $ ; R r + , $ ; 7 : + a Z $ ~ : ) r d r  

and 
4 

(9.21) 
3 ,  

2 b  4 r r - * r  
( ~ 4 + ~ ,  +;) = b2-a2 1 [ $;gr + $o $o - ( - z a 2  $; 7;‘ + g-o* + 7:] dr. 

The reader may readily formulate the problems which govern the derivatives 
of higher order in E of the time-periodic bifurcating solution. It is clear from the 
constructions given in this section that the stream-function series (7.3) involve 
x and s only in the combination ax - s = 6.  It follows from this that 

h 2 
Y(x, r ,  s; E )  = Y ( r ,  8; E ) .  (9.22) 

Functions of x and s which are of the form given by (9.22) are statistically 
stationary (see Q 2). 

10. Numerical solutions and results 
The systems (9.2), (9.4), (9.13) and (9.14) were solvednumerically by a Runge- 

Kutta integration scheme, using the Gram-Schmidt orthonormalization pro- 
cedure to remove the ‘parasitic errors ’ during the integration. This technique 
was first devised by Wazzan, Okamura & Smith (1967) for the solution of the 
Orr-Sommerfeld equation for plane flow. In  this investigation, this procedure 
was extended to solve the non-homogeneous equations (9.13) and (9.14). 

To begin with, the eigenvalue problem of the zeroth-order equations (9.2) was 
solved to obtain c, = wo/a  for a given point (a,R,) = (a, l / A o )  on the neutral- 
stability curve. The corresponding amplitude function $o and its derivatives 
were also computed. This was done for a range of parameters (a,  R,.) for three 
radius ratios 7 = rl/r2 = 1/1.01,* and +. The results of the first two cases agreed 
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a 

0.650 
0.700 
0.750 
0.800 
0.850 
0.900 
0.950 
1.000 

1.025 
1.050 
1.075 
1.090 
1.095 
1.09707 
1.09094 
1.07654 
1-05163 
1.02528 

1-020? 

Rc 

14 923 
10 889 
8 299 
6 583 
5 424 
4 641 
4 136 
3 875 
3 846f 
3 848 
3 924 
4 206 
4 676 
5 064 
6 000 
7 333 
9 333 

12 667 
16 667 

c, 

0.2483 
0.2733 
0.2974 
0.3203 
0.341 7 
0.3612 
0.3782 
0.3918 
0.3959f' 
0.3967 
0.3996 
0.3987 
0.3935 
0-3886 
0.3771 
0.3626 
0-3450 
0.3229 
0.3036 

if 
200.63 
162.89 
135.55 
114.91 
98-72 
85.46 
73.94 
62.92 
58.227 
56.97 
49.96 
40.03 
29.08 
21.46 

4.88 
- 16.78 
-47.18 
- 94.31 
- 147.24 

A2 

- 0.3821 
- 0.3726 
- 0.3448 
- 0.2886 
-0-1911 
- 0-0314 

0-2290 
0.6815 
0.9696t 
1.0580 
1.6718 
3.0007 
5.6075 
9.0251 

53.4886 
- 20'8865 
- 10.1464 
- 7.2881 
- 6.3231 

0 2  

339.89 
286.26 
257-55 
248.50 
257.50 
287.17 
347.27 
467.35 
551- l l t  
577.77 
773.16 

1238.91 
2234.54 
3602.77 

22073.0 
- 9156.86 
- 4835.26 
- 3877.26 
- 3696.57 

76.66 
60.70 
46.73 
33.16 
18-88 
2.68 

- 16.93 
- 42.88 
- 56-44? 
- 60.28 
- 83.53 
- 120.13 
- 163.08 
- 193.69 
- 261.13 
- 350.42 
- 478.69 
- 687.36 
- 931.01 

t Parameters evaluated at this minimum critical point are designated with a tilde. 

TABLE 1. Parameter values at  criticality for 7 = 111.01 

well with those reported by Mott & Joseph (1968). As a check, the eigenvalue cr 
was also computed from the adjoint problem (9.4). It yielded eigenvalues which 
agreed with those obtained from the system (9.2). The adjoint eigenfunction q5: 
and its derivatives for the same range of (a,  R,) values were computed as well. 

Once the q50 problem had been solved, q50 was normalized according to con- 
dition (9.3). The solutions to the non-homogeneous systems (9.13) with (9.lf b) 
and (9.14) with (9.12b) were obtained for the same given parameters c,., a and R, 
as were used in the solution of the q50 problem. These solutions of the non- 
homogeneous equations consist of a solution to the corresponding homogeneous 
equation plus a particular solution. The amplitude functions q511 and and 
their derivatives follow directly from the numerical integration. 

With the q50, #$, q511 and q512 solutions available, the expressions for (D2$o, $$), 
(D4$,, $:) and [Jl] were next evaluated numerically. Finally, the values of A, 
and w, were calculated from (9.18) and (9.19). All the computations were done on 
an IBM 360150 digital computer with double-precision arithmetic. 

The numerical results for 7 = 1/1.01, 4 and 4 were listed, respectively, in 
tables 1 ,2  and 3. To maintain accuracy of the results, it  was found that 100, 150 
and 200 steps, respectively, were needed in the numerical integration over the 
interval a < r 6 b with b-a = 2. 

Inspection of tables 1 ,2  and 3 shows that g' = d[ /dh  changes sign a t  the point 
of maximum wavenumber on the neutral-stability curves. Since the values of 
[Jl]/(D2$0, $:) are everywhere finite, i t  can be seen from (9.18) and (9.19) that 
A, and w, are both unbounded a t  that point on the neutral curve. 
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l% 

0.650 
0.700 
0.750 
0.800 
0.850 
0.900 
0.925 
0.9467 
0.950 
0.975 
1.000 
1.020 
1.02702 
1.02081 
1.00669 
0.99491 
0.98101 
0.96824 
0.95659 

Rc 

28 254 
20 931 
16268 
13239 
11 293 
10 151 
9 860 

9 779 
9 990 

10 737 
12541 
16581 
21 223 
27 856 
33 161 
39 794 
46 426 
53 058 

9 7757 

Cr 

0.2156 
0.2369 
0.2570 
0-2756 
0.2921 
0.3058 
0.3111 
0.31461- 
0.3152 
0.3172 
0.3160 
0.3090 
0.2933 
0.2789 
0.2631 
0.2532 
0.2431 
0.2347 
0-2276 

@ 
289.70 
236.64 
197.46 
167.31 
143.01 
122.09 
112.09 
103.451- 
101.74 
90.08 
74.61 
51.57 
11.22 

- 31.20 
- 89.14 
- 133.89 
- 188.46 
- 241.90 
- 294.56 

4 
0.9512 
1.1331 
1.4469 
1.9591 
2.7795 
4.1171 
5.1195 
6.26121- 
6.5241 
8.7029 

12.9733 
24.5959 

161.787 
- 76.6233 
- 35.6579 
- 28.3378 
-24.1296 
- 21.8281 
- 20.3452 

w2 

2137.7 
2005.7 
2019.6 
2186-8 
2556.2 
3265.5 
3856.1 
4580.97 
4755.3 
6288.7 
9646.0 

19922.1 
154025.0 
- 83926.9 
- 45397.5 
- 39654.1 
- 37208.4 
- 36478.3 
- 36419.7 

- 275.57 
- 268.12 
- 285.70 
- 327.79 
- 397.51 
- 502.67 
- 573'83 
- 626.127 
- 663.75 
- 783.99 
- 967.97 
- 1268.46 
- 1815.29 
- 2390.58 
-3178'63 
- 3794.24 
- 4547.56 
- 5280.31 
- 5992.78 

1- Parameters evaluated at  this minimum critical point are designated with a tilde. 

TABLE 2. Parameter values at criticality for 7 = t 

0.600 
0.650 
0.700 
0.750 
0.800 
0.850 
0.875 
0.900 
0.9047 
0.925 
0.950 
0-975 
0.99026 
1-00320 
0.99549 
0.98008 
0.9647 1 

98 802 
70 529 
53 245 
42 386 
35577 
31 611 
30 535 
30091 
30 0831- 
30 384 
31 728 
35 052 
39 506 
52 675 
79 012 

105 349 
131 687 

0.1563 
0.1738 
0.1903 
0.2055 
0.2189 
0.2299 
0.2343 
0.2376 
0.23801- 
0.2396 
0.2399 
0.2373 
0.2329 
0.2206 
0.2025 
0-1899 
0.1804 

2, 
695.30 
552.90 
453.32 
380.69 
325.68 
282.23 
263.34 
254.58 
242.781- 
228.03 
209.1 1 
184.53 
159.02 
92.65 

- 41.28 
- 175.06 
- 305.29 

1.8257 
1.9853 
2.3726 
3.1574 
4-6162 
7.2143 
9.1776 

11.8047 
12.30521- 
15.4208 
20.7625 
30.2357 
42.9279 

107.140 
- 367.223 
- 113.517 
- 79.7726 

10144-7 
9177.0 
8990.1 
9620.2 

11317.8 
14708.4 
17449.0 
21359.7 
22135.07 
27203.3 
36833.0 
56513-4 
86552.1 

261572 
- 1168150 
- 432583 
- 349581 

- 1269.4 
- 1097.7 
- 1075.5 
- 1202.0 
- 1503'4 
- 2036.1 
- 2416.8 
- 2899.0 
- 2987.5t 
- 3516.4 
- 4341.7 
- 5579.3 
- 6852'3 
- 9926.2 
- 15157.6 
- 19871.8 
- 24353.4 

1- Parameters evaluated at  this minimum critical point are designated with a tilde. 

TARLE 3. Parameter values at criticality for 9 = + 



204 D. D. Joseph and T .  IS. Chen 

Several properties of the bifurcating solutions which are important will not 
be discussed here. We have aIready noted that in the present problem, as in the 
more general problem treated by Joseph & Sattinger (1972), the subcritical 
bifurcating solutions are unstable; disturbances which escape the domain of 
attraction of laminar Poiseuille flow cannot be attracted to the unstable bifur- 
cating solution. Such disturbances snap through the bifurcating solution and 
are attracted to the turbulent flows lying on the friction-factor response curve 
(see figure 1 a). It should also be noted that here, as in the plane Poiseuille flow 
problem treated by Chen & Joseph (1973), nonlinear periodic solutions exist 
for waves which have a smaller wavelength than any periodic wave which exists 
when E = 0. Unlike the plane Poiseuille flow problem, however, the periodic 
solutions with wavenumbers on the lower branch of the neutral-stability curve 
bifurcate subcritically when 7 = 4 and Q. We believe that supercritical bifurca- 
tion on this branch of the curve, which is evident when 7 = 1/1.01, can also be 
found for ducts with 7 = Q and Q for wavenumbers smaller than the ones for 
which results were computed in the present study. 

11. Comparison with experiments 
The use of the friction-factor discrepancy s2 = fT - fL as the measure of the 

a4mplitude of the disturbances makes possible a clear interpretation of the results 
of studies of stability and bifurcation for the problem of transition and turbu- 
lence. Briefly stated, the reason why the linear theory of stability fails to de- 
scribe experiments is that the mathematical solution which arises from the 
instability of laminar flow a t  R = R, bifurcates subcritically and is, therefore, 
itself unstable (see Joseph & Sattinger 1972). Theoretically, laminar flow is 
stable to small disturbances for some interval of R < R, but practically one does 
not observe the laminar flow because it is unstable to larger disturbances. Suffi- 
ciently small disturbances of laminar flow will decay though larger disturbances 
may persist. Disturbances which are not attracted to laminar flow when R < R, 
are attracted by other solutions which exist a t  the same R (with the same mass 
flux as laminar flow). In  the present case the other solutions include a t  least the 
subcritical time-periodic bifurcating solution which we have calculated theoretic- 
ally and the turbulent solutions which are observed in practice. Disturbances 
which escape the domain of attraction of laminar flow cannot be attracted by the 
bifurcating solution because this solution is itself unstable. Finite disturbances 
of laminar Poiseuille flow snap through the unstable time-periodic solution and 
are attracted to other solutions which, for want of a more precise description, 
are called stable turbulence. 

I n  practice stable turbulence appears to have the property of consistent 
reproducibility on the average. By this we mean that for smooth pipes there 
appears to  be a curve, which we have called a response curve, which defines a 
functional relation between the Reynolds number and friction factor (between 
the mas8 flux and pressure gradient). The existence of such a curve, which is 
widely accepted as natural even in elementary books, is actually a remarkable 
event since the curve is defined over a set of fluctuating turbulent flows each of 
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which differs from its neighbours. In  this sense the response curve may be re- 
garded as giving the steady average response of a fluctuating system subjected 
to steady external conditions. It is, therefore, natural that the response curve 
can be defined through analysis of functionals defined over statistically stationary 
solutions of the Navier-Stokes problem for flow in annular ducts (see Howard 
1971). 

The bifurcation diagram in the plane of the response curve is shown in figures 
1 (a ) ,  ( b )  and (c).  The experimentally observed values are taken from the paper 
of Walker, Whan & Rothfus (1957). The co-ordinates Re, and f 2  used by these 
authors are related to R and f by 

where 

The response function for laminar flow is given by 

f L  = (16/R)F2(7h (11.1)  

where 
1 

=- (1 - T I 2  
F2(7) = (l+T)2+(1-y2)/lnv %(?I)’ 

The response curve for laminar flow appears as a straight line 

dlnfL/dlnR = - 1  (11.2) 

on a log-log plot. The response curve for the bifurcating solution near the point 
of bifurcation is given by 

€2 = fT - f L  z ( A  - A,)/A, + o(E4). 

Hence 

and (11.3) 

Equation (11.3) holds for each fixed spatial period, i.e., for each value of a in 
tables 1, 2 and 3. 

The slope of the response curve for the wavenumber which gives the smallest 
critical value R = &, 

zc = Rc(di) = minRc(a), 
a 

is obtained from tables 1, 2 and 3. These slopes are given in table 4. They are 
very close to the slope of the laminar response curve. Inspection of the tables 1, 
2 and 3 shows that the solutions which bifurcate with cz slightly larger than di lie 
even closer to the laminar response curve. It may be interesting to determine the 
envelope of two-dimensional bifurcating solutions. 

All of the features which we have just summarized are evident in figures 1 (a ) ,  
(b)  and (c ) .  The circles there represent experimental observations; solid lines are 
stable solutions and dashed lines are unstable solutions. It is clear from the values 
of dlnf,/dln R given in the figures that the slope of the response curve for 
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FIGURE 1. Bifurcation diagram in the plane of the response curve. 
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~ 1 7 1/1-01 f 
I/[ 1 6 L ~ d 7 ~ 1  0.0430 0.0067 0.0035 
[d lnfT/d In R]x - 1.0430 - 1.0067 - 1.0035 

TABLE 4 .  Values of the slopes of the response curvc a t  R = Ec 

time-periodic flow a t  R = & differs by only a small amount from the slope ( - 1) 
for laminar flow. Of course, the heavy dashed line in the figures only represents 
the slope of the response curve; the computation of the actual curve would require 
computations of the higher-order derivatives of A ( € )  at least. It is natural to 
wonder if the envelope of response curves for the bifurcating solutions which 
continue the dashed line would merge smoothly with the response curve defined 
by experiments (figure 1). It is possible that the continuation of the envelope of 
bifurcation response curves lies near to the line dln f,/dln R = - 1 for values of 
R between f i C  and the transition value (R N 600 or in the conventional notation 
2(U,) (r2 - r,)/v N 2400). I n  the neighbourhood of this transition value the 
value of R on the envelope of response curves for the bifurcating solutions might 
attain a minimum. The envelope of bifurcating solutions on the upper branch 
above the minimum could possibly regain some stability and appear as a curve 
through the experimental data shown in figure 1. The computation of higher- 
order terms in general, and of A,, in particular, is one way to test further 
these conjectures. 
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